
Marcelo Siqueira

UFRN, Brazil
mfsiqueira@mat.ufrn.br





Joint work with

Thiago Lemos Suneeta Ramaswami

UFPR, Brazil Rutgers University, USA
thalemos@inf.ufpr.br rsuneeta@camden.rutgers.edu



3



3

Problem Statement
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Problem Statement

Let S be a connected, boundaryless, and compact surface in Ed
.
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Problem Statement

find an irreducible triangulation T 0
of S from T :

V � E + F = 10� 30 + 20 = 0 = 2 · 0 = 2 · (1� 1) = 2 · (1� g)
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Facts

All closed surfaces have finitely many irreducible triangulations (Barnette &

Edelson, 1989).
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Facts

The largest known irreducible triangulation of an orientable surface of genus

g has

nv =

�
17

2
· g

⌫
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Why Should One Care?

Have been used for

• proving the existence of geometric realizations;

• studying properties of diagonal flips on surfaces triangulations;

• characterizing the structure of flexible triangulations;

• finding bounds for the number of cliques in graphs on surfaces.
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Why Do We Care?

Given a triangulation, T , of S , obtain a quadrangulation, Q, of S
whose vertex set is a (not necessarily proper) superset of the vertex

set of T .
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Main Result

Given a triangulation T of connected, boundaryless, compact surface

S of genus g, there exists an algorithm for computing an irreducible

triangulation T 0
of S in O(g2 + gnf ) time if g is positive; otherwise, T 0

can be computed in O(nf ) time, where nf is the number of triangles of

T .
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triangulation T 0
of S in O(g2 + gnf ) time if g is positive; otherwise, T 0

can be computed in O(nf ) time, where nf is the number of triangles of

T .

When g > 0, our upper bound improves upon the previously best up-
per bound by a lg nf/g factor, which was given by Haijo Schipper in
1991.
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Main Result

Given a triangulation T of connected, boundaryless, compact surface

S of genus g, there exists an algorithm for computing an irreducible

triangulation T 0
of S in O(g2 + gnf ) time if g is positive; otherwise, T 0

can be computed in O(nf ) time, where nf is the number of triangles of

T .

O(nf lg nf + g lnnf + g4)

When g > 0, our upper bound improves upon the previously best up-
per bound by a lg nf/g factor, which was given by Haijo Schipper in
1991.
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Link Condition Test

T4

u

v

K ⇡ T4 () du = dv = 3
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Time Complexity

(1) The cost of testing an edge against the link condition, and
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(2) The number of link condition tests executed by the algorithm.

(1) The cost of testing an edge against the link condition, and
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Time Complexity

(1) The cost of testing an edge against the link condition, and

u

v

x

y z⌦(du · dv)

Naı̈ve

⌦(du · lg dv)

Neighborhood dictionary
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(2) The number of link condition tests executed by the algorithm.
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Time Complexity

(2) The number of link condition tests executed by the algorithm.

Bounding this number is challenging because the contraction of a contractible

edge can make a previously non-contractible edge contractible and vice-versa.
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Time Complexity

(2) The number of link condition tests executed by the algorithm.

K K − uv (K − uv)− ux
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Bounding this number is challenging because the contraction of a contractible

edge can make a previously non-contractible edge contractible and vice-versa.



20

Time Complexity

(2) The number of link condition tests executed by the algorithm.
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Time Complexity

(2) The number of link condition tests executed by the algorithm.
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Testing all edges [vi, x] and [vi, y] first may take ⌦(nf lg nf ) time

nv = 3m+ 2 vertices, with nf 2 ⇥(nv)
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Choose a vertex u from K.

Contract all edges of the form [u, v] until u becomes trapped.
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Our Approach

Choose a vertex u from K.

Contract all edges of the form [u, v] until u becomes trapped.

A vertex w in K is trapped if all edges incident on w in K are non-
contractible edges. Otherwise, vertex w is said to be loose. So, K is an
irreducible triangulation if and only if every vertex in K is a trapped
one.
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Lemma 1
Once u becomes trapped in K, it remains trapped.

(Schipper, 1991)
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Our Approach

Lemma 1
Once u becomes trapped in K, it remains trapped.

(Schipper, 1991)

So, u will be in the irreducible triangulation, T 0.
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Lemma 1
Once u becomes trapped in K, it remains trapped.

(Schipper, 1991)

So, u will be in the irreducible triangulation, T 0.
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Choose a vertex u from K.

Contract all edges of the form [u, v] until u becomes trapped.
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Our Approach

Choose a vertex u from K.

Contract all edges of the form [u, v] until u becomes trapped.

Pick another vertex u from the current triangulation, K.
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Our Approach

(1) The cost of testing an edge against the link condition, and

The cost for testing all edges during the processing of u is

⇥(du) +
X

v2Au

⇥(dv) ,

where Au is the set of vertices that are or become adjacent to u.
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(1) The cost of testing an edge against the link condition, and
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(1) The cost of testing an edge against the link condition, and
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n(z) = true?
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Our Approach

(1) The cost of testing an edge against the link condition, and
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(2) The number of link condition tests executed by the algorithm.
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Our Approach

(2) The number of link condition tests executed by the algorithm.

During the processing of u, edge [u, v] in K is tested against the link condition

exactly once if v has not been selected by the algorithm prior to u; else it is not

tested.
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Our Approach

(2) The number of link condition tests executed by the algorithm.

Why?

During the processing of u, edge [u, v] in K is tested against the link condition

exactly once if v has not been selected by the algorithm prior to u; else it is not

tested.
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(2) The number of link condition tests executed by the algorithm.



28

Our Approach

(2) The number of link condition tests executed by the algorithm.

Keep a counter for the number of critical cycles every edge [u, v] belongs

to.
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(2) The number of link condition tests executed by the algorithm.
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Our Approach

(2) The number of link condition tests executed by the algorithm.

Lemma 2
Let K be a surface triangulation, and let v be any vertex of degree 3 in
K. If K is (isomorphic to) T4, then no edge of K is a contractible edge.
Otherwise, each of the 3 edges of K incident on v is a contractible edge
in K.
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(2) The number of link condition tests executed by the algorithm.
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(2) The number of link condition tests executed by the algorithm.
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Our Approach

(2) The number of link condition tests executed by the algorithm.

Lemma 3
Let K be a surface triangulation, and let f be a contractible edge of

K. If a non-contractible edge e of K becomes contractible in K � f ,

then f must be incident on a degree-3 vertex v of K and e must belong

to lk(v,K). Moreover, e belongs to a single critical cycle in K, which

consists of the edges in lk(v,K), and this cycle becomes non-critical in

K � f .
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(2) The number of link condition tests executed by the algorithm.
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Our Approach

(2) The number of link condition tests executed by the algorithm.
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(2) The number of link condition tests executed by the algorithm.
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Our Approach

(2) The number of link condition tests executed by the algorithm.

Lemma 4
Let K be a surface triangulation, and let f be a contractible edge of K.

If a contractible edge e of K becomes non-contractible in K � f , then

the vertex v of f identified with the other vertex, u, of f in K�f is such

that

dv > 3 .
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(2) The number of link condition tests executed by the algorithm.
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Our Approach

(2) The number of link condition tests executed by the algorithm.
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Suneeta Ramaswami and Marcelo Siqueira

A fast algorithm for computing irreducible triangulations of closed surfaces in Ed
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Suneeta Ramaswami and Marcelo Siqueira

A fast algorithm for computing irreducible triangulations of closed surfaces in Ed

Questions?


