# A Fast Algorithm for Computing Irreducible Triangulations of Closed Surfaces in $\mathbb{E}^{d}$ and Its Applications to the TriQuad Problem 

Marcelo Siqueira

UFRN, Brazil
mfsiqueira@mat.ufrn.br


A Fast Algorithm for Computing Irreducible Triangulations of Closed Surfaces in $\mathbb{E}^{d}$ and Its Applications to the TriQuad Problem

# A Fast Algorithm for Computing Irreducible Triangulations of Closed Surfaces in $\mathbb{E}^{d}$ and Its Applications to the TriQuad Problem 

Joint work with

Thiago Lemos<br>UFPR, Brazil<br>thalemos@inf.ufpr.br

Suneeta Ramaswami<br>Rutgers University, USA<br>rsuneeta@camden.rutgers.edu




## Problem Statement

## Problem Statement

Let $\mathcal{S}$ be a connected, boundaryless, and compact surface in $\mathbb{E}^{d}$.


## Problem Statement

## Problem Statement

Given a triangulation $\mathcal{T}$ of $\mathcal{S}$,


## Problem Statement

## Problem Statement

find an irreducible triangulation $\mathcal{T}^{\prime}$ of $\mathcal{S}$ from $\mathcal{T}$ :


$$
V-E+F=10-30+20=0=2 \cdot 0=2 \cdot(1-1)=2 \cdot(1-g)
$$

## Problem Statement

## Problem Statement

## $\mathcal{T}^{\prime}$ is irreducible if and only if $\mathcal{T}^{\prime}$ has no contractible edges


edge contraction


## Problem Statement

## $\mathcal{T}^{\prime}$ is irreducible if and only if $\mathcal{T}^{\prime}$ has no contractible edges

## Problem Statement

## $\mathcal{T}^{\prime}$ is irreducible if and only if $\mathcal{T}^{\prime}$ has no contractible edges



## Problem Statement

## $\mathcal{T}^{\prime}$ is irreducible if and only if $\mathcal{T}^{\prime}$ has no contractible edges



## Facts

## Facts

All closed surfaces have finitely many irreducible triangulations (Barnette \& Edelson, 1989).


21, with $n_{v} \in\{7,8,9,10\}$
29 , with $n_{v} \in\{8,9,10,11\}$


2, with $n_{v} \in\{6,7\}$

## Facts

## Facts

If the genus $g$ of $\mathcal{S}$ is positive, then any irreducible triangulation of smallest size (known as minimal) has $\Theta(\sqrt{g})$ vertices. Also, for any irreducible triangulation of $\mathcal{S}$,

$$
n_{v} \leq 13 \cdot h-4
$$

where $h$ is the Euler genus of $\mathcal{S}$ (if $\mathcal{S}$ is orientable, then $h=2 g$. Otherwise, $h=g$.)
(Joret \& Wood, 2010)

## Facts

## Facts

The largest known irreducible triangulation of an orientable surface of genus $g$ has

$$
n_{v}=\left\lfloor\frac{17}{2} \cdot g\right\rfloor
$$

(Sulanke, 2006)

## Why Should One Care?

## Why Should One Care?

All irreducible triangulations of $\mathcal{S}$ form a "basis" for all triangulations of $\mathcal{S}$.

## Why Should One Care?

All irreducible triangulations of $\mathcal{S}$ form a "basis" for all triangulations of $\mathcal{S}$.

Have been used for

- proving the existence of geometric realizations;
- studying properties of diagonal flips on surfaces triangulations;
- characterizing the structure of flexible triangulations;
- finding bounds for the number of cliques in graphs on surfaces.


## Why Do We Care?

## Why Do We Care?

## The TriQuad Problem

Given a triangulation, $\mathcal{T}$, of $\mathcal{S}$, obtain a quadrangulation, $\mathcal{Q}$, of $\mathcal{S}$ whose vertex set is a (not necessarily proper) superset of the vertex set of $\mathcal{T}$.


## Why Do We Care?

## The TriQuad Problem

Given a triangulation, $\mathcal{T}$, of $\mathcal{S}$, obtain a quadrangulation, $\mathcal{Q}$, of $\mathcal{S}$ whose vertex set is a (not necessarily proper) superset of the vertex set of $\mathcal{T}$.


## Main Result

## Main Result

Given a triangulation $\mathcal{T}$ of connected, boundaryless, compact surface $\mathcal{S}$ of genus $g$, there exists an algorithm for computing an irreducible triangulation $\mathcal{T}^{\prime}$ of $\mathcal{S}$ in $\mathcal{O}\left(g^{2}+g n_{f}\right)$ time if $g$ is positive; otherwise, $\mathcal{T}^{\prime}$ can be computed in $\mathcal{O}\left(n_{f}\right)$ time, where $n_{f}$ is the number of triangles of $\mathcal{T}$.

## Main Result

Given a triangulation $\mathcal{T}$ of connected, boundaryless, compact surface $\mathcal{S}$ of genus $g$, there exists an algorithm for computing an irreducible triangulation $\mathcal{T}^{\prime}$ of $\mathcal{S}$ in $\mathcal{O}\left(g^{2}+g n_{f}\right)$ time if $g$ is positive; otherwise, $\mathcal{T}^{\prime}$ can be computed in $\mathcal{O}\left(n_{f}\right)$ time, where $n_{f}$ is the number of triangles of $\mathcal{T}$.

When $g>0$, our upper bound improves upon the previously best upper bound by a $\lg n_{f} / g$ factor, which was given by Haijo Schipper in 1991.

## Main Result

Given a triangulation $\mathcal{T}$ of connected, boundaryless, compact surface $\mathcal{S}$ of genus $g$, there exists an algorithm for computing an irreducible triangulation $\mathcal{T}^{\prime}$ of $\mathcal{S}$ in $\mathcal{O}\left(g^{2}+g n_{f}\right)$ time if $g$ is positive; otherwise, $\mathcal{T}^{\prime}$ can be computed in $\mathcal{O}\left(n_{f}\right)$ time, where $n_{f}$ is the number of triangles of $\mathcal{T}$.

When $g>0$, our upper bound improves upon the previously best upper bound by a $\lg n_{f} / g$ factor, which was given by Haijo Schipper in 1991.

$$
\mathcal{O}\left(n_{f} \lg n_{f}+g \ln n_{f}+g^{4}\right)
$$

## Common Strategy

## Common Strategy

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).

## Common Strategy

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).
While there exists a contractible edge $e=[u, v]$ in the current triangulation $K$, contract $e$, identifying $v$ with $u$ and producing triangulation $K-u v$.


## Link Condition Test

## Link Condition Test

If $K$ is (isomorphic to) $\mathcal{T}_{4}$ then no edge of $K$ is contractible.


## Link Condition Test

If $K$ is (isomorphic to) $\mathcal{T}_{4}$ then no edge of $K$ is contractible.


$$
K \approx \mathcal{T}_{4} \Longleftrightarrow d_{u}=d_{v}=3
$$

## Link Condition Test

## Link Condition Test

If $K$ is not (isomorphic to) $\mathcal{T}_{4}$, then $e=[u, v]$ is contractible iff $e$ does not belong to a critical cycle (i.e., a 3 -cycle that does not bound a triangle) in $K$.


## Link Condition Test

If $K$ is not (isomorphic to) $\mathcal{T}_{4}$, then $e=[u, v]$ is contractible iff $e$ does not belong to a critical cycle (i.e., a 3-cycle that does not bound a triangle) in $K$.


Edge $e=[u, v]$ belongs to a critical cycle iff $u$ and $v$ have a common neighbor other than $x$ and $y$, where $x$ and $y$ are the vertices of the link of $e$.

## Time Complexity

## Time Complexity

Time complexity is dictated by two factors:

## Time Complexity

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and

## Time Complexity

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and
(2) The number of link condition tests executed by the algorithm.

## Time Complexity

## Time Complexity

(1) The cost of testing an edge against the link condition, and


## Time Complexity

(1) The cost of testing an edge against the link condition, and

$$
\Omega\left(d_{u} \cdot d_{v}\right)
$$



Naïve

## Time Complexity

(1) The cost of testing an edge against the link condition, and


## Time Complexity

## Time Complexity

(2) The number of link condition tests executed by the algorithm.

## Time Complexity

(2) The number of link condition tests executed by the algorithm.

Bounding this number is challenging because the contraction of a contractible edge can make a previously non-contractible edge contractible and vice-versa.

## Time Complexity

(2) The number of link condition tests executed by the algorithm.

Bounding this number is challenging because the contraction of a contractible edge can make a previously non-contractible edge contractible and vice-versa.


## Time Complexity

(2) The number of link condition tests executed by the algorithm.

## Time Complexity

(2) The number of link condition tests executed by the algorithm.


$$
n_{v}=3 m+2 \text { vertices, with } n_{f} \in \Theta\left(n_{v}\right)
$$

Testing all edges $\left[v_{i}, x\right]$ and $\left[v_{i}, y\right]$ first may take $\Omega\left(n_{f} \lg n_{f}\right)$ time

## Our Approach

## Our Approach

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).

## Our Approach

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).

Choose a vertex $u$ from $K$.

## Our Approach

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).

Choose a vertex $u$ from $K$.

Contract all edges of the form $[u, v]$ until $u$ becomes trapped.

## Our Approach

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).

Choose a vertex $u$ from $K$.

Contract all edges of the form $[u, v]$ until $u$ becomes trapped.

A vertex $w$ in $K$ is trapped if all edges incident on $w$ in $K$ are noncontractible edges. Otherwise, vertex $w$ is said to be loose. So, $K$ is an irreducible triangulation if and only if every vertex in $K$ is a trapped one.

## Our Approach

## Our Approach

Lemma 1 (Schipper, 1991)
Once $u$ becomes trapped in $K$, it remains trapped.

## Our Approach

Lemma 1 (Schipper, 1991)
Once $u$ becomes trapped in $K$, it remains trapped.

So, $u$ will be in the irreducible triangulation, $\mathcal{T}^{\prime}$.

## Our Approach

Lemma 1 (Schipper, 1991)
Once $u$ becomes trapped in $K$, it remains trapped.

So, $u$ will be in the irreducible triangulation, $\mathcal{T}^{\prime}$.


## Our Approach

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).

Choose a vertex $u$ from $K$.

Contract all edges of the form $[u, v]$ until $u$ becomes trapped.

## Our Approach

Let $K$ be the current triangulation (i.e., $K=\mathcal{T}$ initially).

Choose a vertex $u$ from $K$.

Contract all edges of the form $[u, v]$ until $u$ becomes trapped.

Pick another vertex $u$ from the current triangulation, $K$.


## Our Approach

## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and

## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and

The cost for testing all edges during the processing of $u$ is

$$
\Theta\left(d_{u}\right)+\sum_{v \in \mathcal{A}_{u}} \Theta\left(d_{v}\right)
$$

where $\mathcal{A}_{u}$ is the set of vertices that are or become adjacent to $u$.

## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and

## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and


## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and


## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and

## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and


## Our Approach

Time complexity is dictated by two factors:
(1) The cost of testing an edge against the link condition, and


## Our Approach

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

During the processing of $u$, edge $[u, v]$ in $K$ is tested against the link condition exactly once if $v$ has not been selected by the algorithm prior to u; else it is not tested.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

During the processing of $u$, edge $[u, v]$ in $K$ is tested against the link condition exactly once if $v$ has not been selected by the algorithm prior to $u$; else it is not tested.

Why?

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

We devised an efficient mechanism to determine when a previously non-contractible, tested edge incident on $u$ becomes contractible (if it does).

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

We devised an efficient mechanism to determine when a previously non-contractible, tested edge incident on $u$ becomes contractible (if it does).

Keep a counter for the number of critical cycles every edge $[u, v]$ belongs to.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Lemma 2

Let $K$ be a surface triangulation, and let $v$ be any vertex of degree 3 in $K$. If $K$ is (isomorphic to) $\mathcal{T}_{4}$, then no edge of $K$ is a contractible edge. Otherwise, each of the 3 edges of $K$ incident on $v$ is a contractible edge in $K$.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.


## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Lemma 3

Let $K$ be a surface triangulation, and let $f$ be a contractible edge of $K$. If a non-contractible edge $e$ of $K$ becomes contractible in $K-f$, then $f$ must be incident on a degree- 3 vertex $v$ of $K$ and $e$ must belong to $\operatorname{lk}(v, K)$. Moreover, $e$ belongs to a single critical cycle in $K$, which consists of the edges in $\operatorname{lk}(v, K)$, and this cycle becomes non-critical in $K-f$.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.


K

$K-u v$

$(K-u v)-u x$

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Lemma 4

Let $K$ be a surface triangulation, and let $f$ be a contractible edge of $K$. If a contractible edge $e$ of $K$ becomes non-contractible in $K-f$, then the vertex $v$ of $f$ identified with the other vertex, $u$, of $f$ in $K-f$ is such that

$$
d_{v}>3
$$

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.

## Our Approach

Time complexity is dictated by two factors:
(2) The number of link condition tests executed by the algorithm.


## Experimental Results

## Experimental Results



$$
g \ll n_{f}
$$

$$
g \approx 2 \cdot \sqrt{n_{f}}
$$






## More Details

## More Details

Suneeta Ramaswami and Marcelo Siqueira
A fast algorithm for computing irreducible triangulations of closed surfaces in $\mathbb{E}^{d}$ CoRR, arXiv:1409.6015, 2014

Code:
http://www.mat.ufrn.br/~mfsiqueira/Marcelo_Siqueiras_Web_Spot/Software.html

## More Details

Suneeta Ramaswami and Marcelo Siqueira
A fast algorithm for computing irreducible triangulations of closed surfaces in $\mathbb{E}^{d}$
CoRR, arXiv:1409.6015, 2014

Code:
http://www.mat.ufrn.br/~mfsiqueira/Marcelo_Siqueiras_Web_Spot/Software.html

## Questions?

