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Problem Statement



Problem Statement

Let S be a connected, boundaryless, and compact surface in E?.
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find an irreducible triangulation 7' of S from 7

V-E+F=10-30+20=0=2-0=2-(1-1)=2-(1—g)
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[ T’ is irreducible if and only if 7’ has no contractible edges]
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Facts

All closed surfaces have finitely many irreducible triangulations (Barnette &
Edelson, 1989).

21, with n,, € {7,8,9,10} 29, with n, € {8,9,10, 11} 2, with n, € {6,7}
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Facts

If the genus g of S is positive, then any irreducible triangulation of smallest size
(known as minimal) has ©(,/g) vertices. Also, for any irreducible triangulation
of S,

ny <13-h—4,

where h is the Euler genus of S (if S is orientable, then h = 2g. Otherwise,
h=g.)

(Joret & Wood, 2010)
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The largest known irreducible triangulation of an orientable surface of genus

g has
|17
Ny = 5 g

(Sulanke, 2006)
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Why Should One Care?

All irreducible triangulations of S form a ”basis” for all triangulations of S.

Have been used for
e proving the existence of geometric realizations;
e studying properties of diagonal flips on surfaces triangulations;
e characterizing the structure of flexible triangulations;

e finding bounds for the number of cliques in graphs on surfaces.
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The TriQuad Problem

Q,of S

7
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Why Do We Care

whose vertex set is a (not necessarily proper) superset of the vertex

Given a triangulation, 7, of §, obtain a quadrangulation
set of 7.
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When g > 0, our upper bound improves upon the previously best up-

per bound by a lgny/g factor, which was given by Haijo Schipper in
1991.
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Let K be the current triangulation (i.e., K = 7 initially).



Common Strategy

Let K be the current triangulation (i.e., K = 7 initially).

While there exists a contractible edge e = |u,v] in the current triangu-
lation K, contract e, identifying v with v and producing triangulation

K — uw.
x
'v z edge contraction z
/\A
\_/
A A vertex splitting
Y







Link Condition Test



Link Condition Test

If K is (isomorphic to) 74 then no edge of K is contractible.
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Link Condition Test

If K is (isomorphic to) 74 then no edge of K is contractible.

T4

K~Ty<—d,=d,=3
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If K is not (isomorphic to) 74, then e = [u, v] is contractible iff e does not

belong to a critical cycle (i.e., a 3-cycle that does not bound a triangle) in
K.




Link Condition Test

If K is not (isomorphic to) 74, then e = [u, v] is contractible iff e does not

belong to a critical cycle (i.e., a 3-cycle that does not bound a triangle) in
K.

Edge e = [u,v] belongs to a critical cycle iff v and v have a common
neighbor other than x and y, where x and y are the vertices of the link
of e.
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(2) The number of link condition tests executed by the algorithm.
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Q(d, - dy)



Time Complexity

(1) The cost of testing an edge against the link condition, and

N Q(dy, -lgd,)

Neighborhood dictioE

Q(d, - dy)
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Bounding this number is challenging because the contraction of a contractible
edge can make a previously non-contractible edge contractible and vice-versa.



Time Complexity

(2) The number of link condition tests executed by the algorithm.

Bounding this number is challenging because the contraction of a contractible
edge can make a previously non-contractible edge contractible and vice-versa.

K K —uv (K —uwv) —ux
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(2) The number of link condition tests executed by the algorithm.

20



Time Complexity

(2) The number of link condition tests executed by the algorithm.

n, = 3m + 2 vertices, with ny € 9(n,)

Testing all edges [v;, x| and |v;, y| first may take Q(nylgny) time

20
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Once u becomes trapped in K, it remains trapped.
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So, u will be in the irreducible triangulation, T .
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Our Approach

Lemma 1 (Schipper, 1991)
Once u becomes trapped in K, it remains trapped.

So, u will be in the irreducible triangulation, T .

K e K —wv .
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Our Approach

Let K be the current triangulation (i.e., K = 7 initially).

Choose a vertex u from K.

Contract all edges of the form [u, v] until © becomes trapped.
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Our Approach

Let K be the current triangulation (i.e., K = 7 initially).

Choose a vertex u from K.

Contract all edges of the form [u, v] until © becomes trapped.

Pick another vertex u from the current triangulation, K.

23
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(1) The cost of testing an edge against the link condition, and
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Our Approach

Time complexity is dictated by two factors:

(1) The cost of testing an edge against the link condition, and

The cost for testing all edges during the processing of u is

O(du) + > O(dy),

veA,

where A, is the set of vertices that are or become adjacent to u.

24
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Our Approach

Time complexity is dictated by two factors:

(1) The cost of testing an edge against the link condition, and

' v edge contraction z

vertex sphttmg
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Our Approach

Time complexity is dictated by two factors:

(1) The cost of testing an edge against the link condition, and

n(z) := true
x
edge contraction z

vertex Sphttlng

VV
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Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.

During the processing of u, edge |u, v] in K is tested against the link condition
exactly once if v has not been selected by the algorithm prior to u; else it is not
tested.
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Our Approach

Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.

During the processing of u, edge |u, v] in K is tested against the link condition
exactly once if v has not been selected by the algorithm prior to u; else it is not

tested.

Why?
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Time complexity is dictated by two factors:
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We devised an efficient mechanism to determine when a previously
non-contractible, tested edge incident on u becomes contractible (if it
does).
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Time complexity is dictated by two factors:
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29



Our Approach

Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.

Lemma 2

Let K be a surface triangulation, and let v be any vertex of degree 3 in
K. If K is (isomorphic to) 74, then no edge of K is a contractible edge.
Otherwise, each of the 3 edges of K incident on v is a contractible edge
in K.
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Our Approach

Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.

Lemma 3

Let K be a surface triangulation, and let f be a contractible edge of
K. If a non-contractible edge e of K becomes contractible in K — f,
then f must be incident on a degree-3 vertex v of K and e must belong
to 1k(v, K'). Moreover, e belongs to a single critical cycle in K, which
consists of the edges in lk(v, K), and this cycle becomes non-critical in
K- f.
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Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.

K K —uv (K —uv) —ux
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Our Approach

Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.

Lemma 4

Let K be a surface triangulation, and let f be a contractible edge of K.
If a contractible edge e of K becomes non-contractible in K — f, then
tﬁe vertex v of f identified with the other vertex, u, of f in K — f is such
that

d, > 3.
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Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.
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Our Approach

Time complexity is dictated by two factors:

(2) The number of link condition tests executed by the algorithm.

Kl K2 K3
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Experimental Results

g << ny g2 ./ny
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Suneeta Ramaswami and Marcelo Siqueira

A fast algorithm for computing irreducible triangulations of closed surfaces in E4
CoRR, arXiv:1409.6015, 2014

Code:
http://www.mat.ufrn.br/~mfsiqueira/Marcelo_Siqueiras_ Web_Spot/Software.html
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More Details

Suneeta Ramaswami and Marcelo Siqueira

A fast algorithm for computing irreducible triangulations of closed surfaces in E4
CoRR, arXiv:1409.6015, 2014

Code:
http://www.mat.ufrn.br/~mfsiqueira/Marcelo_Siqueiras_ Web_Spot/Software.html

Questions?
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